The generator matrix

 1  0  0  0  1  1  1  6  1  1  1  1 2X+6 2X+3  1  1  1  1  1  1 X+6  6  1  1  1 X+3  1 2X  6  1  1  1  6  1  1  1  1  X  1  1  1  1  X  1  1  1 2X+3  1 X+3  1 2X+3  1 X+6  1
 0  1  0  0  6  1  4  1  X X+3 2X+8 2X+5  1  1 X+5 2X+7 2X+3 X+2  6 X+7  6  1 2X+1  8 X+5  1 2X+1 2X+3  1 2X+6  7 X+2  1 X+1 2X+8 2X+4 2X+5  1 2X+8 2X+3 2X+2  X  1 X+7  X 2X+6 2X 2X  X X+7 X+3  X  1  6
 0  0  1  0 2X+7 2X+1 X+5 2X+4 X+1 X+8 X+3  4  8 X+4 X+3  0  6  8  2 X+6  1 2X+3 2X+2  2  4  X 2X+3  1  5  8  4 2X 2X+5 X+5 X+8  6  6 X+7 2X X+7 2X+7 X+6  1 2X+1 X+7 X+6  1 2X+4  1 X+7  1  3 X+1 X+6
 0  0  0  1 2X+5  3 2X+2 2X+2  1 X+3 X+7  3 2X 2X+7  8 2X+6 2X+1 X+1  5 2X+7 2X+2 2X+4 2X+4 2X+3 2X+8 2X+8  8  1  7 2X+4  4  0 X+5  0 2X+5  X X+5  6 2X+3 2X 2X+7 X+7 2X+3 2X+5 2X+7  5 2X+8 X+4  8  X X+4  0 2X+5 2X+3

generates a code of length 54 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 97.

Homogenous weight enumerator: w(x)=1x^0+522x^97+1092x^98+3662x^99+5754x^100+10698x^101+15024x^102+19560x^103+28380x^104+37862x^105+44520x^106+56226x^107+60634x^108+59256x^109+60726x^110+48150x^111+32868x^112+22440x^113+13508x^114+6300x^115+2586x^116+1142x^117+258x^118+72x^119+60x^120+78x^121+30x^122+20x^123+12x^124

The gray image is a code over GF(3) with n=486, k=12 and d=291.
This code was found by Heurico 1.16 in 434 seconds.